Is calcium oxide amphoteric

Alkaline earth metals: elements of the second main group

Handbook of Chemical Elements pp 1-63 | Cite as

  • Hermann Sicius
Living reference work entry

Later version available View entry history

First Online:


All elements of this group, from beryllium to barium, were discovered around 200 years ago, and radium as early as the late 19th century. Magnesium, calcium and also barium are very common in the earth's crust; on the other hand beryllium and strontium are much rarer. Radium is one of the decay products of naturally occurring uranium and is therefore always contained in uranium ores, even if only in the smallest traces.

The elements of this group are all metals, but show clear gradations of their properties. The "real" alkaline earth metals calcium, strontium, barium and radium show the typical high reactivity towards water, acids and non-metals, whereas these are only weakened in the case of magnesium and to a much lesser extent in the case of beryllium.

This is a preview of subscription content, log in to check access.


  1. Abegg R, Auerbach F (1908) Handbuch der Anorganischen Chemie, Vol 2. Hirzel, Stuttgart, S 222Google Scholar
  2. Aktories K et al (2017) General and special toxicology and pharmacology, 12th edition Elsevier / Urban and Fischer, Munich / Jena. ISBN 978-3-437-42525-7Google Scholar
  3. Alz-Chem AG (2011) Producing carbide with plastic waste (BINE-Projektinfo brochure 8/2011). Federal Ministry for Economic Affairs and Energy, BonnGoogle Scholar
  4. Anderson RGW, Fyffe JG (1992) Joseph Black. A bibliography. Science Museum, LondonGoogle Scholar
  5. Audi G et al (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 279: 3-128 CrossRefGoogle Scholar
  6. Auner N et al (2014) Synthetic methods of organometallic and inorganic chemistry, groups 1, 2, 13, and 14, Vol. 2. Thieme, Stuttgart, S 59. ISBN 3-13-179171-3Google Scholar
  7. Bamford CH, Tipper CFH (1980) Reactions in the solid state. Elsevier, Amsterdam, S 155. ISBN 0444418075Google Scholar
  8. Barin I (1997) Thermochemical data of pure substances, 3rd ed. Wiley-VCH, Weinheim, S 296. ISBN 978-3527287451Google Scholar
  9. Barrett-Connor E et al (1994) Coffee-associated osteoporosis offset by daily milk consumption. The Rancho Bernardo study. J Am Med Assoc 271 (4): 280-283 CrossRefGoogle Scholar
  10. Bartley JC, Reber EF (1961) Toxic effects of stable strontium in young pigs. J Nutr 75: 21-28 PubMedCrossRefGoogle Scholar
  11. Blachnik R (2013) Paperback for chemists and physicists Volume 3: Elements, inorganic compounds and materials, minerals. Springer, Berlin / Heidelberg, S 330. ISBN 978-3-642-58842-6Google Scholar
  12. Blum T (1924) Osteomyelitis of the Mandible and Maxilla. J Am Dent Assoc 11: 802-805. Scholar
  13. Blumenbach JF (1891) About the strontianite, a Scottish fossil which also seems to contain a new ground earth; and some other natural history curiosities. From a letter from Mr. Rath Sulzer zu Ronneburg, communicated by J. F. Blumenbach, Magaz. for the. Latest Phys Natural History 8 (3): 68–72Google Scholar
  14. Blumber-Schwinum B et al (1995) Hager's Handbook of Pharmaceutical Practice. Springer, Berlin. ISBN 978-3-642-63342-3Google Scholar
  15. Böhm J, Hassel O (1927) The crystal structure of the calcium silicide CaSi2. Z Anorg Allg Chem 160: 152. Scholar
  16. Bolland MJ et al (2010) Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ 341 (29/1): c3691 – c3691PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bonka H, ​​Narroq J (2011) Chernobyl nuclear reactor accident, Römpp Online. Thieme, Stuttgart, last updated DecemberGoogle Scholar
  18. Bordet P et al (2000) Structural phase transitions in under high pressure. Phys Rev B 62: 11392. Scholar
  19. Borisenko VE (2000) Semiconducting silicides, 1st ed. Springer, Berlin / Heidelberg, S 187. ISBN 978-3-642-64069-8CrossRefGoogle Scholar
  20. Brackett EB et al (1963) The crystal structures of barium chloride, barium bromide and barium iodide. J Phys Chem 67: 2132-2135. Scholar
  21. Bradley M et al (1967) The reactions of calcium and barium carbides with 0-16 M nitric acid. J Inorg Nucl Chem 29 (5): 1255-1260. Scholar
  22. Brauer G (1963) Handbook of preparative inorganic chemistry, Vol. 1, 2nd ed. Academic Press, New York, S 231-232Google Scholar
  23. Brauer G (1975) Handbook of Preparative Inorganic Chemistry, Volume I, 3rd edition. Enke, Stuttgart, S 890. ISBN 3-432-02328-6Google Scholar
  24. Brauer G (1978) Handbook of Preparative Inorganic Chemistry, Vol II, 3rd edition Enke, Stuttgart, S 897/902 / 906-908 / 909-912 / 916/923 / 926-929 / 930-932 / 949. ISBN 3-432-87813-3Google Scholar
  25. Brock T et al (2000) Textbook of Paint Technology. Vincentz, Hanover, pp 123–155. ISBN 3-87870-569-7Google Scholar
  26. Brunhuber E, Hasse S (1997) Foundry Lexicon, 17th edition. Schiele & Schön, Berlin. ISBN 3-7949-0606-3Google Scholar
  27. Buchmeier W, Lutz HD (1986) Structure of strontium iodide dihydrate. Acta Cryst C 42: 651-653. Scholar
  28. Bytheway I et al (1995) Core distortions and geometries of the difluorides and dihydrides of Ca, Sr, and Ba. Inorg Chem 34 (9): 2407-2414 CrossRefGoogle Scholar
  29. Calvi LM, Bushinsky DA (2008) When is it appropriate to order an ionized calcium? J Am Soc Nephrol 19 (7): 1257-1260 PubMedCrossRefGoogle Scholar
  30. Cammann K (2001) Instrumental Analytical Chemistry. Spectrum Akademischer Verlag, Heidelberg, pp. 4–60Google Scholar
  31. Canfield P, Budko SL (2005) Hot prospects for cryogenic superconductors. Spectrum Wiss 6: 56Google Scholar
  32. Cantor G (1991) Michael Faraday: sandemanian and scientist. A study of science and religion in the nineteenth century. Macmillan Publishers, LondonCrossRefGoogle Scholar
  33. Cantor G et al (1996) Michael Faraday. Kumarian Press Inc, Bloomfield. ISBN 978-1-57392-556-3Google Scholar
  34. Castillo SM et al (2016) Lattice dynamics of the rhombohedral polymorphs of CaSi2. Inorg Chem 55: 10203. Scholar
  35. Coulson W (1857) On the diseases of the bladder and prostate gland. John Churchill, London, p.15Google Scholar
  36. Crawford A (1779) Experiments and obsertions on animal heat, and the inflammation of combustible bodies. John Murray Publishers, LondonGoogle Scholar
  37. Crosland MP (1959) The use of diagrams as chemical 'equations' in the lectures of William Cullen and Joseph Black. Ann Sci 15: 75-90 CrossRefGoogle Scholar
  38. Cruickshank W (1801) Continued observations on the chemical effects of galvanic electricity. Ann Phys 7 (1) CrossRefGoogle Scholar
  39. Curran MAJ et al (2011) High-resolution records of the beryllium-10 solar activity proxy in ice from Law Dome, East Antarctica: measurement, reproducibility and principal trends. Clim Past 7: 707-721 CrossRefGoogle Scholar
  40. Dagani MJ et al (2005) Bromine Compounds. In: Ullmann's Encyclopedia of Technical Chemistry. Wiley-VCH, Weinheim, S 22Google Scholar
  41. Davy H (1808) Electro-chemical researches, on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia. Phil Trans Royal Soc Lond 98: 333-337Google Scholar
  42. Diehl JF (2003) Radioactivity in food. Wiley-VCH, Weinheim, S 24. ISBN 978-3-527-30722-7CrossRefGoogle Scholar
  43. Dobrokhotova ZV et al (1992) Thermodynamic properties of calcium and barium phosphides. J Therm Anal Calorim 38 (5): 1113-1122. Scholar
  44. Doelter C (2013) The elements and compounds of: Ti, Zr, Sn, Th, Nb, Ta, N, P, As, Sb, Bi, V and H Volume III. First department. Springer, Berlin / Heidelberg, S 290. ISBN 978-3-642-49781-0Google Scholar
  45. Dorneles L et al (2004) Magnetism in thin films of CaB6 and SrB6. Appl Phys Lett 85: 6377-6379. Scholar
  46. Doyle WP (1982) Thomas Charles Hope, M.D., F.R.S.E., F.R.S., (1766-1844). University of Edinburgh, EdinburghGoogle Scholar
  47. Effenberger H, Pertlik F (1986) Four monazite type structures: comparison of SrCrO4, SrSeO4, PbCrO4 (crocoite), and PbSeO4. Z Kristallogr 176: 75-83 CrossRefGoogle Scholar
  48. Elschenbroich C (2008) Organometallchemie, 6th edition. Vieweg / Teubner, Wiesbaden. ISBN 978-3-519-53501-0Google Scholar
  49. Etourneau J, Hagenmuller P (1985) Structure and physical features of the rare-earth borides. Philos Mag B 52 (3): 589.
  50. European Medicines Agency, Xofigo. Radium-223 dichloride, EMA / 579264/2013, EMEA / H / C / 002653 (published November 13, 2013) Google Scholar
  51. European Union, Implementing Regulation (EU) 2015/446 amending Regulation (EU) No. 37/2010 with regard to the substance “barium selenate”, published March 17, 2015Google Scholar
  52. Fahy S, Hamann DR (1990) Electronic and structural properties of CaSi2. Phys Rev B Condens Matter 41: 7587-7592. Scholar
  53. Fan C et al (2014) A stable binary BeB2 phase. Sci Rep 4: Art. 6993CrossRefGoogle Scholar
  54. Filippelli GM (2011) Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosph 84 (6): 759-766. Scholar
  55. Fine KD et al (1991) Intestinal absorption of magnesium from food and supplements. J Clin Invest 88 (2): 396-402PubMedPubMedCentralCrossRefGoogle Scholar
  56. Finkel RC, Suter M (1993) AMS in the earth sciences: technique and applications, advances in analytical geochemistry, Vol 1. JAI Press, Inc, Greenwich, S 1-14. ISBN 1-55938-332-1Google Scholar
  57. Forsgren J et al (2013) A template-free, ultra-adsorbing, high surface area carbonate nanostructure. Public Library of Science ONE 8: e68486PubMedGoogle Scholar
  58. Friedrich A et al (2002) High-pressure behavior of Ba (OH)2: phase transitions and bulk modulus. Phys Rev 66: 214103-211 / -8. Scholar
  59. Fritsch F (2007) Liming of arable land and grassland (State crop production advice Rhineland-Palatinate, DLR Rheinhessen-Nahe-Hunsrück, March) Google Scholar
  60. Fujita K et al (1976) Magnesium-butadiene addition compounds: isolation, structural analysis and chemical reactivity. J Organomet Chem 113 (3): 201-213 CrossRefGoogle Scholar
  61. Galasso FS (1973) Barium titanate, BaTiO3 (Barium titanium (IV) oxide). In: Wold A, Ruff JK (Eds) Inorganic Syntheses, Vol 14. McGraw-Hill Book Co., Inc., New York, pp 142-143. ISBN 978-0070713208Google Scholar
  62. Gassmann F (1994) What's wrong with the greenhouse earth? Vdf Hochschulverlag at the ETH Zurich, Zurich, S 63. ISBN 978-3-7281-1935-3CrossRefGoogle Scholar
  63. Gavilano JL et al (2000) Low-temperature NMR studies of SrB6. 281-282: 428-429. Scholar
  64. Gehrmann S (2010) The fauna of the North Sea: invertebrates. Mollusks, bog animals, cnidarians. BoD - Books on Demand, Self-published / Norderstedt, S 125. ISBN 398125532-1Google Scholar
  65. Ghali E (2010). ISBN 0-470-53176-2) Corrosion resistance of aluminum and magnesium alloys: understanding, performance and testing. Wiley, New York, p.139CrossRefGoogle Scholar
  66. Gladischewskij EI, Kripjakewitsch PI (1965) Unfortunately, the title cannot be found. The quote was about the annealing of a strontium silicide batch with 60 atom% Si at 600 ° C and the production of the compound Sr4Si6. Zh Strukt Khim 6 (1): 163Google Scholar
  67. Goldblat J, Cox D (1988) Nuclear weapon tests: prohibition or limitation? Stockholm International Peace Research Institute / Oxford University Press, Oxford, pp. 83-85. ISBN 978-0-19-829120-6Google Scholar
  68. Golf S Bioavailability of Organic and Inorganic Compounds, Pharmazeutische Zeitung (July 2009).
  69. Gradmann C, Withering W (2005) In: Wegner W (Hrsg) Enzyklopädie Medizingeschichte. De Gruyter, Berlin, S 1501. ISBN 3-11-015714-4Google Scholar
  70. Greenwood NN, Earnshaw A (1988) Chemistry of the Elements, 1st ed. VCH, Weinheim, S 133-675. ISBN 3-527-26169-9Google Scholar
  71. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd ed. (Butterworth-Heinemann, Oxford, pp 109-110. ISBN 0080379419Google Scholar
  72. Grum F, Luckey GW (1968) Optical sphere paint and a working standard of reflectance. Appl Opt 7 (11): 2289-2294. Scholar
  73. Guder WG, Nolte J (2005) The laboratory book for clinics and practices, 1st edition Elsevier B.V./Urban and Fischer, Munich. ISBN 3-437-23340-8Google Scholar
  74. Guerlac H (1970) Black, Joseph. In: Dictionary of scientific biography, 2nd ed. Charles Scribner’s Sons, New York, pp 173-183 Google Scholar
  75. Gust A (2012) Development and manufacture of a single photon source based on II-VI semiconductor quantum dots. Mensch-und-Buch, BerlinGoogle Scholar
  76. Hamilton J (2004) A life of discovery: Michael Faraday, giant of the scientific revolution. Random House, New York. ISBN 1-4000-6016-8Google Scholar
  77. Hauptmann S (1985) Organic Chemistry, 2nd ed. VEB Deutscher Verlag für Grundstoffindindustrie / GDR, Leipzig, S 263. ISBN 3-342-00280-8Google Scholar
  78. Heaney RP (1996) Bone mass, nutrition, and other lifestyle factors. Nutr Rev 54 (4/2): 3-10 Google Scholar
  79. Heaney RP et al (1989) Calcium absorption in women: relationships to calcium intake, estrogen status, and age. J Bone Miner Res 4 (4): 469-475 PubMedCrossRefGoogle Scholar
  80. Hellwege K-D (2003) The practice of dental prophylaxis: A guide to individual prophylaxis, group prophylaxis and initial periodontal therapy, 6th edition Thieme, Stuttgart, S 164. ISBN 978-3-13-127186-0Google Scholar
  81. Herklotz G et al (1999) Fine wire made from a gold alloy, method for its production and its use (DE 19733954 A1, Heraeus AG, published on January 14, 1999) Google Scholar
  82. Hermann G (1990) Five decades ago: From transuranic elements to nuclear fission. Angew Chem 102 (5): 469-496. Scholar
  83. Herrmann Z (1931) About the structures of strontium iodide, calcium chloride and calcium bromide hexahydrates. Z Anorg Allg Chem 197 (1): 212-218. Scholar
  84. Heuel-Fabianek B (2014) Partition Coefficients (Kd) for the Modeling of Transport Processes of Radionuclides in Groundwater [Forschungszentrum Jülich, JÜL-Ber., 4375], ISSN 0944-2952Google Scholar
  85. Hill RJ (1977) A further refinement of the barite structure. The Can Mineral 15: 522-526Google Scholar
  86. Hinks DG et al (2001) The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect. Nature 411: 457-460 PubMedCrossRefGoogle Scholar
  87. Hippel AR von (1950), Ferroelectricity, domain structure, and phase transitions of barium titanate, Rev Mod Phys 22 (3): 221-237. Scholar
  88. Hirayama N (2019) Substitutional and interstitial impurity p-type doping of thermoelectric Mg2Si: a theoretical study. Sci Tech Adv Mat 20 (1): 160-172. Scholar
  89. Hirshfeld A (2006) The electric life of Michael Faraday. Raincoast Books, Vancouver. ISBN 978-1-55192-945-3Google Scholar
  90. Hofmann KA, Inorganic Chemistry (Springer, Berlin / Heidelberg 2013), p. 190. ISBN 978-3-663-14240-9Google Scholar
  91. Holleman AF, Wiberg E, Wiberg N (1995) Textbook of Inorganic Chemistry, 101st edition. De Gruyter, Berlin, S 1106-1109 / 1121. ISBN 3-11-012641-9 Google Scholar
  92. Holleman AF, Wiberg E, Wiberg N (2007) Textbook of Inorganic Chemistry, 102nd edition. De Gruyter, Berlin, S 1216/1233 / 1238-1241 / 1244. ISBN 978-3-11-017770-1Google Scholar
  93. Holmes-Farley R Aquarist magazine and blog, aquarium chemistry: strontium and the reef aquarium Accessed on May 12, 2014
  94. Hope TC (1798) Account of a mineral from strontian, and of a peculiar species of earth which it contains. Trans Royal Soc Edinb 4 (2): 3-39 CrossRefGoogle Scholar
  95. Hope TC (1805) Experiments and observations upon the contraction of water by heat at low temperatures. Trans Royal Soc Edinb 5: 379-405 CrossRefGoogle Scholar
  96. Horn F, Fluck E (1979) Process for the production of aluminum phosphide and / or magnesium phosphide (DE 2945647 A1, German Society for Pest Control, published on May 21, 1981) Google Scholar
  97. Hosenfeld M et al (1930) Beryllium. In: 26. Gmelins Handbuch der Anorganischen Chemie, 8th edition. Verlag Chemie, BerlinGoogle Scholar
  98. Hosono H et al (2017) Exploration of stable strontium phosphide-based electrides: theoretical structure prediction and experimental validation. J Am Chem Soc 139 (44): 15668-15680. Scholar
  99. Hülsenberg D (2009) Beryllium. In: Römpp Online. Thieme, Stuttgart, last updated JulyGoogle Scholar
  100. Hutchings K (2000) Classic chemistry experiments. Royal Society of Chemistry, London, p. 181. ISBN 0-85404-919-3Google Scholar
  101. Isikaku-Irongwe OP (2012) Beryllium silicide clusters, BenSin, Be2nSin (n = 1-4) and possible MgB2-like superconductivity in some of them, arXiv: 1205.5931v1 [cond-mat.supr-con]. Cornell University, IthacaGoogle Scholar
  102. Jacobi M (2006) Pierre Curie - a life dedicated to research. Phys in Us Time 37 (3): 116-121. ISSN 0031-9252CrossRefGoogle Scholar
  103. James FAJL (2010) Michael Faraday: a very short introduction. Oxford University Press, New York.ISBN 978-0-19-957431-5CrossRefGoogle Scholar
  104. Janzon KH et al (1968) Notes: On the structure of the CaSi phase2. Z Naturf B 23 (11): 1946-2014. Scholar
  105. Kauwenbergh SJ van (2010) World phosphate rock reserves and resources (Intl Fertil Devel Cent Tech Bull, 75, 2Google Scholar
  106. Kirby and HW, Salutsky ML (1964) The radiochemistry of radium, Report NAS-NS 3057. National Academy of Sciences, National Research Council, U.S. Atomic Energy Commission, National Academies Press, Washington, DCGoogle Scholar
  107. Coal J, Petzel T (1977) The preparation of calcium selenide, strontium selenide, barium selenide, and europium (II) selenide by the reaction of the metals with hydrogen selenide in liquid ammonia. Z Anorg Allg Chem 437: 193–196 CrossRefGoogle Scholar
  108. Köhler J et al (2008) Explosivstoffe, 10th edition. Wiley-VCH, Weinheim. ISBN 978-3-527-32009-7CrossRefGoogle Scholar
  109. Kojima H et al (1968) Melting points of inorganic fluorides. Can J Chem 46 (18): 2968-2971 CrossRefGoogle Scholar
  110. Korownyk C et al (2011) Does calcium supplementation increase risk of myocardial infarction? Can Fam Physician 57 (7): 798PubMedPubMedCentralGoogle Scholar
  111. Köster K et al (1976) Experimental bone replacement using resorbable calcium phosphate ceramics. Langenb Arch Chir 341 (2): 77-86.